
Lightweight Remote Procedure Calls for Wireless Sensor and Actuator Networks

Andreas Reinhardt, Parag S. Mogre, Ralf Steinmetz
Multimedia Communications Lab, Technische Universität Darmstadt

Rundeturmstr. 10, 64283 Darmstadt, Germany
Email: {andreas.reinhardt, parag.mogre, ralf.steinmetz}@kom.tu-darmstadt.de

Abstract—This paper presents S-RPC, a lightweight frame-
work for remote procedure calls on wireless sensor and actua-
tor nodes. It enables seamless interoperability between nodes by
offering a common interface to remote method invocations. In
the past, communication between these embedded devices has
been realized over proprietary protocols specifically tailored for
the given use case. This, however, strongly limits the possibilities
to integrate new functions into the network and extend it by
new sensing and actuation devices. In contrast to proprietary
solutions, S-RPC is a framework which allows unified access
to functions on remote devices. S-RPC uses an efficient data
representation scheme to achieve small message sizes, and
permits dynamic integration of new devices with different
functions into the network during runtime. We show its real-
world applicability through a reference implementation, which
occupies less than 4% of a TelosB’s resources, and increases
the energy consumption per invocation by just 0.11%.

I. INTRODUCTION

Wireless Sensor and Actuator Networks (WSANs) aug-
ment the capabilities of pure sensor networks by the pos-
sibility to interact with the physical world [1]. For ex-
ample WSANs for smart buildings may allow actuation
(e.g. turn a fan on) based on sensor (e.g. temperature) mea-
surements. Traditionally, WSAN communication protocols
define packet structures statically at compile time due to
efficiency reasons, i.e. each of the fields in a radio message
is hard-coded to contain a particular type of data [2]. While
this is efficient with regards to the computational complexity
(and thus the demand for energy) of accessing the data in the
packet, applications must be adapted and re-deployed on the
nodes whenever new sensor or actuator types are introduced
into the network. Current WSANs are thus confined to a
static set of sensor and actuator types only; adding new types
to the network at runtime is impossible.

To gain the flexibility of accessing sensing and actuation
functionality offered by remote WSAN nodes and at the
same time cater for the dynamic extensibility of the network,
a generic approach without static field allocations is re-
quired. The paradigm of Remote Procedure Calls (RPCs) [3]
is well established to access functions on remote hosts on
the Internet, and we believe that it is optimally suited for
the given application scenario. Current WSAN applications
are however generally implemented in a monolithic way
without support for RPCs. In contrast, RPCs are prominent
in the area of Web Services [4], where they enable loose

coupling of components. The applicability of existing im-
plementations on embedded systems is strongly limited, as
WSAN nodes can often not even transmit packet payloads
of more than 127 bytes at a time (assuming operation
over IEEE 802.15.4 [6], commonly used in WSANs). To
allow access to sensing and actuation capabilities over an
RPC interface, a lightweight message format as well as an
efficient serialization mechanism for messages is necessary.

In this paper, we present S-RPC (Sensor-RPC), a light-
weight RPC framework for WSAN nodes, which addresses
the shortcomings of existing approaches. Each method pro-
vided on the node (e.g. access to sensor readings, processing,
or actuation capabilities) can be registered to the S-RPC
framework during runtime, enabling its access through re-
mote invocations. Our contributions are:
(1) We define a generic and efficient RPC message format,
catering for the extensibility of the network by additional
devices with new sensors or different actuator controls.
(2) We present our modular parameter serialization concept,
enabling to confine S-RPC instances to the required data
types to cover a heterogeneous set of devices.
(3) We validate the applicability of our S-RPC implementa-
tion on real hardware, analyzing its resource consumption,
message sizes, invocation delays, and energy demand.

We address these contributions as follows: In Sec. II, we
motivate the need for lightweight remote procedure calls.
The detailed concept and implementation of S-RPC are
presented in Sec. III, and its performance is evaluated in
Sec. IV. We summarize related work in Sec. V and conclude
this paper in Sec. VI.

II. BRIDGING DEVICE HETEROGENEITY USING RPCS

Radio communication is an inherent characteristic of
WSANs, and many functions frequently used in current
applications rely on the exchange of data packets. In current
WSAN operating systems like TinyOS and Contiki, tasks
like neighbor discovery, periodic data reporting, or the
activation of actuators are generally realized by exchanging
data in statically defined message structures. To distinguish
incoming packets and cater for correct interpretation, type
fields or port numbers are used. Messages addressed to
invalid ports or with unknown packet types are silently
discarded, effectively disabling the incorporation of new
functionalities into the network.

Seventh IEEE International Workshop on Sensor Networks and Systems for Pervasive Computing

978-1-61284-936-2/11/$26.00 ©2011 IEEE 116

rst
Textfeld
Andreas Reinhardt, Parag Mogre, Ralf Steinmetz: Lightweight Remote Procedure Calls for Wireless Sensor and Actuator Networks. In: Workshop Proceedings of the 9th Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM), p. 116--121, EDAS Conference Services, March 2011. ISBN 978-1-61284-936-2.

A. Remote Procedure Calls

In contrast to static allocation of message types or ports,
the use of RPCs allows to extend a WSAN by new functions
at any given time, as the format of exchanged messages is
unified. After a node has published the description of a new
procedure interface, any other node can invoke the method
through means of the generic message format.

The general process of invoking a method on a remote
device is shown in Fig. 1. The optional first step of pub-
lishing the interface description can be omitted in systems
where interfaces are known a priori, or when additional
means for obtaining information about these interfaces are
employed, e.g. service discovery [5] or introspection [7].
In the subsequent step, the remote procedure call is made,
requesting the provider to invoke the referenced method. If
required, the parameters to be passed to the method are also
provided along with the RPC request. On the provider side,
the procedure is invoked locally with the given parameter
set, and the result returned to the requester in a response.

Consumer Provider

(Interface Description)

RPC Request

Method
Execution

RPC Response

Network

(w
ai

t f
or

 re
sp

on
se

)

Application
Flow

Figure 1. Simplified flow of a remote procedure call

Traditionally, RPC calls exhibit synchronous behavior,
i.e., they block the invoking application until a result has
been obtained. To cope with provider and connection fail-
ures during invocations, specific error semantics are used
(e.g. at-least-once or at-most-once). While being irrelevant
for idempotent methods (operations that do not incur a state
change, e.g. polling a sensor in WSNs), these semantics
become relevant when actuators are controlled. We discuss
the semantics supported in WSANs in Sec. III-C.

To transport RPC messages over the network, all pa-
rameters need to be serialized into a sequence of bytes.
While the serialization process of primitive data types often
equals the concatenation of the individual data bytes, the
representation of complex data structures and objects as a
series of bytes is often confined to platforms, programming
languages, or comparably verbose, thus strongly hampering
the applicability of RPCs on resource-constrained devices.

B. Lightweight RPC for WSANs

In contrast to smartphones or laptop computers, WSAN
nodes incorporate embedded microcontrollers and are gen-
erally operated on sources with a finite energy budget like
batteries [8]. Besides the use of energy-efficient hardware,

Table I
SELECTION OF PLATFORMS ENVISIONED IN WSANS

Device name CPU clock RAM Operating system
TelosB 8 MHz 10 kB TinyOS / Contiki

SunSPOT 180 MHz 512 kB Java / SquawkVM
Gumstix Verdex 600 MHz 256 MB Linux

simultaneously energy-efficient algorithms are applied to
maximize node runtimes. To adapt to these limitations of
WSANs, a solution to perform RPCs must be sufficiently
lightweight to be supported even on the smallest partici-
pating platform. We have compared a representative set of
WSAN platforms in Table I, illustrating the discrepancy
between device capabilities. Especially the limited resources
of the TelosB platform are significantly exceeded when using
full-flavored RPC implementations, such as CORBA [9].

While full RPC implementations are designed to support
serialization of a broad variety of data types, the actual
number of different data types in a WSAN is usually
limited. Especially, the absence of complex objects leads
to a small number of data types, e.g. signed and unsigned
integers of different sizes, strings, and arrays of primitive
data types. Providing the RPC implementation with generic
data serializers leads to increased resource consumption,
although the implemented functionality is never being used.

As mentioned in the preceding section, RPCs are per-
formed in a synchronous manner and block the application
while waiting for the response. However, especially when
WSAN nodes are connected over wireless links, packet
losses may occur. Simultaneously, high roundtrip times may
be introduced due to the use of energy-aware medium
access control protocols. To differentiate lost packets from
high latency in the transmissions, dedicated mechanisms are
required. We target to keep our protocol compatible with
existing solutions to reliably transport data over unreliable
channels (e.g. [10]), although details are beyond the scope of
this paper. In summary, the following three factors influence
our RPC design:

1) Confining the resource demand for encoding/decoding
and buffering of data to a minimum.

2) Finding a trade-off between the data types supported
and the corresponding resource consumption.

3) Defining a compact data representation scheme to limit
the additional overhead on packets.

III. DESIGN OF THE S-RPC FRAMEWORK

The S-RPC framework has been designed following the
structural diagram depicted in Fig. 2, in which the sequence
numbers indicate the typical flow of data. Remote methods
can be invoked by the consumer node through a dedicated
interface offered by the S-RPC framework. Invocations are
encoded by the S-RPC data representation layer (DRL). All
parameters are serialized by dedicated modules specifically
designed to efficiently encode the given data type. The
encoded message is transmitted to the method provider,

117

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Invocation

Network

Data Representation

Serialization /
Deserialization

Transport Transport

Data Representation

Response

Serialization /
Deserialization

Consumer Provider

Method

S-RPC S-RPC

1

3 4

2 5

6 7

8

910

11

12

Figure 2. Layers of the S-RPC framework

where the DRL caters for invoking the necessary deserializer
modules, invocation of the local method, and generation of
the S-RPC response. On reception of a reply, the return value
is deserialized and returned to the consumer application.

We have chosen to uncouple data serialization and rep-
resentation to allow for a flexible configuration of the data
types supported by each participating node. Each device can
be fitted with the data types its own procedures consume or
generate instead of enforcing support for a network-wide
selection of relevant data types. As the use of complex
serialization engines would disqualify S-RPC for resource-
constrained systems, the use of modular serializers even
allows more powerful platforms to support a larger set of
serializers while small systems can be confined to just the
minimum set.

A. The Data Representation Layer

The DRL is the core component of S-RPC, and fulfills the
task of creating S-RPC messages from invocation calls as
well as returning the responses to the requester. For methods
on remote hosts that require parameters, the DRL checks
the set of available serializers for their support of the given
data type. If present, the corresponding serializer is invoked,
returning the serialized values as well as a unique data type
identifier. Otherwise, an error code is returned immediately
to the invoking application. Once all parameters have been
serialized, the resulting byte sequences are concatenated by
the DRL and prefixed by the S-RPC header.

The header follows the structure shown in the upper four
bytes of Fig. 3 for a message with three parameters, and
its fields are used as follows: The message type (MsgType)
field is two bit wide and specifies if the following message
represents a request (binary value 00), a response (01), or
an error (10). The binary value of 11 is reserved for future
extensions of S-RPC. In the parameter count field, the
number of data type identifiers following the second header
byte is defined. Being six bits in size, it allows to indicate
between zero and 63 parameters. The invocation sequence
number is used to distinguish multiple calls between iden-
tical consumer and provider nodes due to the asynchronous
character of S-RPC, discussed in more detail in Sec. III-C.
Finally, the data type identifiers indicate the types of the

Bit 7 6 5 4 3 2 1 0
+----+----+----+----+----+----+----+----+

H | Byte 1 | MsgType | Parameter Count (3) |
e | +----+----+----+----+----+----+----+----+
a | Byte 2 | Invocation Sequence Number |
d | +----+----+----+----+----+----+----+----+
e | Byte 3 | Data type ID #1 | Data Type ID #2 |
r | +----+----+----+----+----+----+----+----+
| Byte 4 | Data type ID #3 | Padding bits |

+----+----+----+----+----+----+----+----+
| Byte 5 | Data type 1 content |
| ... : :

P | Byte x | (length defined by serializer) |
a | +----+----+----+----+----+----+----+----+
y | Byte x+1 | Data type 2 content |
l | ... : :
o | Byte y | (length defined by serializer) |
a | +----+----+----+----+----+----+----+----+
d | Byte y+1 | Data type 3 content |
| ... : :
| Byte z | (length defined by serializer) |

+----+----+----+----+----+----+----+----+

Figure 3. S-RPC representation of a message with three parameters

data fields that follow the header. If the number is odd, four
padding bits are inserted. For RPC request messages, the first
parameter contains a byte array indicating the name of the
function to call. Replies are generally identified through the
invocation sequence number, but can optionally also carry
the name of the invoked function.

The design decision to specify the data types in the header
has been made to allow verification of the availability of
the required deserializer module before trying to deserialize
the data. Knowledge about the packet structure also allows
invoked methods to verify if the provided parameters match
the required parameter set before executing the call. Ad-
ditionally, using the structure of contained data types as
the similarity metric for stream-oriented data compression,
presented in our previous paper [11], becomes a viable way
to allow packet size reductions and thus preserve energy.

B. Serialization Modules

As a core design decision, we have decided to use ded-
icated serialization modules for each data type anticipated
to be present in the network. Instead of utilizing a single
serializer/deserializer component, S-RPC employs a modular
serialization concept, which allows the developer to fit nodes
with serializer components on demand. Each serializer bears
a unique identifier for the data type it represents, allowing
the decoder to interpret the corresponding content correctly.
As shown in Fig. 3, the identifier fields in our reference
implementation have been defined to be four bits wide, so
that up to 16 data types can be represented in total.

Given the typical application domain of WSANs, where
packet payloads are mostly comprised of boolean fields
and integer values of different sizes, the comparably small
number of supported data types proves to be sufficient. Each
serializer is responsible for performing efficient conversion
of its input data, i.e. means towards lossless data reduction
(such as run-length encoding) amongst array elements, or
the application of efficient string encodings. If further data

118

Table II
DATA TYPE ASSIGNMENTS

ID Data type Size Remarks
0 null 0 bytes indicates void results
1 boolean value 1 byte
2 8bit unsigned integer 1 byte
5 32bit signed integer 4 bytes
8 byte array (string) variable output prefixed by length
9 array of other types variable types defined in subheader
14 Java serialized object variable uses Java serializer
15 reserved n/a allows future extensions

types, such lists of key-value pairs, need to be transferred
between applications, corresponding serializer/deserializer
components can be included. The efficient data represen-
tation of S-RPC can also be used to encapsulate calls to
RESTful web services. In our reference implementation, we
have defined data type assignments as shown in Table II.
Some type identifiers have been intentionally left unassigned
to allow adaptation to the intended application.

As shown in Fig. 3, the length of serialized values is
determined by the data type itself and is either fixed or stored
in the serialized implementation. Each deserializer thus
returns both the value stored in the S-RPC data type field as
well as the pointer to the beginning of the subsequent entry
in the sequence. Obviously, when deserializer modules are
unavailable, the correct offset cannot be returned, possibly
leading to incorrect deserialization. However, if data types
are unknown to a node, it can generally be assumed that
no local method makes use of them, and thus that an error
message can be returned immediately.

C. Message Transport and Error Handling

As RPCs are traditionally executed in a synchronous
manner, a low delay link is mandatory to avoid unnecessary
waiting periods of the consumer node. However, to achieve
long node lifetimes, energy-efficient data transport protocols
are mandatory, which often introduce additional delays.
Hence, synchronous method invocation is infeasible when
addressing such devices. In consequence, S-RPC has been
designed to work in an asynchronous manner.

Sequence numbers are added to all S-RPC messages to
link corresponding response and request messages. To re-
cover from remote node failures, packet losses, or excessive
delays, timeout mechanisms are integrated into S-RPC. If the
provider nodes get disconnected from the network, an error
message is generated at intermediate nodes to provide the
caller with details about the problem and thus terminate the
call. As a result, only best-effort execution and at-most-once
semantics are possible.

D. Method Implementation from a Developer’s Perspective

The S-RPC framework caters for the communication and
provides access to methods for serialization/deserialization
of messages. To integrate a new method into the framework,
the corresponding function must be programmed, and its
metadata must be registered to the framework. The basic

implementation of a method to add two integer numbers in
our TinyOS version is shown in Code Fragment 1, wherein
the helper functions to convert integer values to and from
their serialized form are provided by the S-RPC framework.

Code Fragment 1 Implementation of the add function
char* add(char* i1, char* i2) {
return int2srpc(srpc2int(i1) + srpc2int(i2));

}

Besides its implementation, the function must be regis-
tered to the S-RPC framework by defining its metadata and
adding it to the list of supported functions. This process is
indicated in Code Fragment 2 for the function implemented
above. The methodStruct prototype is provided by the
framework, and must be instantiated for every function
available for remote access. Registration of the function is
completed after the add_srpc_method call, while unregis-
tration (e.g. due to a lack of energy) is possible at any time
using the remove_srpc_method function.

Code Fragment 2 Registering the function to the framework
const struct methodStruct add_func = {

.name = "add";

.paramCount = 2;

.parama = IntegerDataType;

.paramb = IntegerDataType;

.returnType = IntegerDataType;

.function = &add;
};
add_srpc_method(add_func);

Both presented implementations are based on our TinyOS
implementation, however the corresponding code in our Java
implementation running on SunSPOT [12] nodes is analog
and thus omitted.

IV. PERFORMANCE EVALUATION

To validate the applicability of S-RPC on WSAN nodes,
we have implemented S-RPC using the TinyOS operating
system on the TelosB platform. To allow for comparison,
we have additionally developed a reference implementation
with the same functionality, where a dedicated type field
determines which function to execute. The following eight
methods were implemented in the both the reference im-
plementation as well as our S-RPC version, and used in all
further analyses:

char[] cat(char[] a, char[] b) concatenates strings
void ledsOn(void) turns node LEDs on
char[] ping(void) returns string pong

int[] echo(int[] a) echoes input array
int add(int a, int b) returns a+ b
int diff(int a, int b) returns a− b
bool xor(bool a, bool b) returns a⊕ b
int sum(int[] a) returns

∑
a

119

Table III
RESULTING SIZES FOR THE TINYOS IMPLEMENTATION OF S-RPC

No methods 8 methods
ROM RAM ROM RAM

Ref. 16720 bytes 1210 bytes 17372 bytes 1374 bytes
S-RPC 17376 bytes 1348 bytes 19256 bytes 1578 bytes
Diff. 656 bytes 138 bytes 1884 bytes 204 bytes

A. Size of the S-RPC framework

As the TelosB platform [13] is limited to 48kB of applica-
tion ROM and 10kB of RAM, the implementation of S-RPC
must expose a sufficiently small footprint in both regards
to remain applicable. We have thus compiled both S-RPC
and the reference, and show the resulting ROM and RAM
footprints in Table III. When incorporating the S-RPC stack
without any functions offered, a mere size increase of 656
bytes application ROM as well as 138 bytes of additional
memory are occupied. Even when all eight functions are
included, only 1.8 kilobytes of ROM and only 204 additional
bytes of RAM are required, representing less than 4% of the
available application memory and only 2% of RAM.

B. RPC Message Sizes

The message sizes to invoke the functions presented in the
preceding section are compared in Table IV. All carry the
full name of the called method, as well as all parameters
including their types. Similarly, all responses contain the
corresponding invocation sequence number as well as a
type field indicating the type of the returned value. Overall,
only d2+ #parameters

2 e bytes of overhead are generated by
S-RPC, an amount well tolerable in most WSANs.

Table IV
MESSAGE SIZE COMPARISON

Method call Request size Response size
cat("foo", "bar"); 15 bytes 8 bytes

ledsOn(); 9 bytes 2 bytes
ping(); 12 bytes 7 bytes

echo(1, 2, 3); 21 bytes 15 bytes
add(1024, 2148); 15 bytes 6 bytes
diff(728, 8210); 16 bytes 6 bytes
xor(true, false); 9 bytes 3 bytes
sum(3, 2, 1); 20 bytes 6 bytes

C. Invocation Delay and Energy Consumption

To monitor the time required to process invocations, we
have implemented a function to invoke each of the eight
methods shown in Table IV locally at the provider node.
The encountered delays of these local invocations show a
measurable discrepancy on the TelosB: Less than 20µs are
required to execute the actual processing, while the time
required to deserialize the S-RPC data, invoke the contained
method, and serialize the result ranges from 360–375µs.

In order to verify the real-world impact of this observa-
tion, we have subsequently set up a practical experiment,
in which a dedicated TelosB node emitted S-RPC requests
over the radio channel whenever a reply for the preceding

cat ledsOn ping echo add diff xor sum
0

5

10

15

20

25

In
vo

ca
tio

n
de

la
y

[m
s] Reference S−RPC

Figure 4. Experienced delays for remote method invocations

invocation was received. The experiment has been conducted
for each of the functions, whereby the average delays
measured for remote invocations as well as the minimum and
maximum values are depicted in Fig. 4. In contrast to local
method calls, it becomes clear that the processing duration
becomes almost negligible when compared to radio commu-
nications. A supplementary energy simulation in COOJA has
shown that the energy consumed to process a single call on
the MCU increases by 9.4% from 2.56mJ to 2.81mJ. With
regard to the node’s total energy requirement however, the
additional expenditure to process S-RPC requests reduces to
an 0.11% increase of the total consumption only.

V. RELATED WORK

With the rise of computer networks and the Internet, the
way has been paved for the invocation of methods and ser-
vices on remote machines. Approaches towards lightweight
implementations include RESTful web services [14] and
the use of compact data representations in SOAPjr [15].
Both do however not focus on the efficient serialization of
parameters. Addressing the efficient encoding of messages,
the kXML [16] parser for resource-constrained devices,
provides support for the WAP Binary XML (WBXML)
protocol [17]. However, as all data fields are encoded using
string representations, the encoding is still not optimal in
terms of size. Specifically adapted to embedded sensing
systems, the TinyRPC stack, allowing for static remote
procedure calls on sensor network nodes, has been presented
in [18]. Utilizing a compiler extension, all methods offered
for remote invocation must be defined at compile time. Later,
Whitehouse et al. have developed Marionette, a version of
Embedded RPC [19], which adds RPC functionalities to
nodes in sensor networks to increase the debugging capa-
bilities of the network. All interfaces are extracted during
compile time as well, thus later changes or additions to the
set of interfaces are unsupported.

Special focus on the efficient serialization of parameters
contained in RPC messages is given in [20]. The serialization
preprocesses radio message definitions at compile-time and
performs optimizations, e.g. limiting the number of bits
required to transfer an integer if its values range between
previously known bounds. Recently, Moritz et al. have
presented means for encoding and compression of SOAP
messages [21]. Similarly, in their implementation the inter-
face definition step must precede compilation to adapt to

120

the message contents. The initial design target of RPCs, as
presented by Birrell and Nelson in [3], was transparency,
i.e. make remote calls indistinguishable from local calls.
In the case of WSANs however, the overhead introduced
by calling local functions through the RPC framework
should be avoided. We have thus chosen to allow access to
local functions directly and only use S-RPC when invoking
methods over the network. Opposed to static sensor network
deployments, we assume that nodes may join the network
at a later time, or leave during runtime due to a depletion
of their energy budget. None of the presented solutions has
been designed to adapt to these dynamics. We have therefore
addressed these shortcomings in this paper.

VI. CONCLUSION

In this paper, we have presented S-RPC as a lightweight
and extensible mechanism to invoke remote methods in
wireless sensor and actuator networks. Specifically designed
for resource-constrained node platforms, S-RPC features a
modular serialization concept, allowing to configure it to
the relevant data types. To cater for correct interpretation
of the exchanged messages, S-RPC uses a lightweight data
representation layer, which only adds a few bytes of over-
head to all packets. Our experimental validation has shown
that S-RPC requires less than 0.5ms to process incoming
requests, resulting in an additional energy demand of just
0.11%. S-RPC can be run over existing WSAN transport
protocols like 6LoWPAN. It is thus well suited to unify
the access to the heterogeneous set of embedded systems
envisioned to comprise WSANs and the Internet of Things.

ACKNOWLEDGMENT

This research has been supported by the German Federal
Ministry of Education and Research (BMBF).

REFERENCES

[1] I. F. Akyildiz and I. H. Kasimoglu, “Wireless Sensor and
Actor Networks: Research Challenges,” Ad Hoc Networks
Journal, vol. 2, no. 4, 2004.

[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister, “System Architecture Directions for Network Sen-
sors,” in Proceedings of the 10th Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2000.

[3] A. D. Birrell and B. J. Nelson, “Implementing Remote
Procedure Calls,” ACM Transactions on Computer Systems,
vol. 2, no. 1, 1984.

[4] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Ser-
vices – Concepts, Architectures and Applications. Springer,
2003.

[5] R. Marin-Perianu, J. Scholten, P. Havinga, and P. Hartel,
“Cluster-based Service Discovery for Heterogeneous Wireless
Sensor Networks,” International Journal of Parallel, Emer-
gent and Distributed Systems, vol. 23, no. 4, 2008.

[6] IEEE Std, “802.15.4 Part 15.4: Wireless Medium Access Con-
trol and Physical Layer Specifications for Low-Rate Wireless
Personal Area Networks,” 2006.

[7] B. Henderson, “XML-RPC Introspection,” Online: http://
xmlrpc-c.sourceforge.net/introspection.html, 2007.

[8] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “In-
strumenting the World with Wireless Sensor Networks,” in
Proceedings of the International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2001.

[9] S. Vinoski, “CORBA: Integrating Diverse Applications
Within Distributed Heterogeneous Environments,” IEEE
Communications Magazine, vol. 35, no. 2, 1997.

[10] Y. Sankarasubramaniam, Ö. B. Akan, and I. F. Akyildiz,
“ESRT: Event-to-Sink Reliable Transport in Wireless Sensor
Networks,” in Proceedings of the 4th ACM International
Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), 2003.

[11] A. Reinhardt, M. Hollick, and R. Steinmetz, “Stream-oriented
Lossless Packet Compression in Wireless Sensor Networks,”
in Proceedings of the 6th Annual IEEE Communications Soci-
ety Conference on Sensor, Mesh and Ad Hoc Communications
and Networks (SECON), 2009.

[12] Sun Microsystems Inc., “Project SunSPOT - Sun
Small Programmable Object Technology,” Online:
http://www.sunspotworld.com, 2008.

[13] Memsic Corporation, “TelosB Datasheet,” Online: http://
www.memsic.com, 2010.

[14] L. Richardson and S. Ruby, RESTful Web Services. O’Reilly
Media, Inc., 2007.

[15] R. Manson, “SOAPjr,” Online: http://soapjr.org/, 2008.

[16] S. Haustein, “kXML v2,” Online: http://kxml.sf.net/, 2005.

[17] Wireless Application Protocol Forum, Ltd., “Binary XML
Content Format Specification, Version 1.3,” 2001.

[18] T. D. May, S. H. Dunning, and J. O. Hallstrom, “An RPC
Design for Wireless Sensor Networks,” in Proceedings of the
2nd IEEE International Conference on Mobile Ad-hoc and
Sensor Systems Conference (MASS), 2005.

[19] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim,
J. Jeong, J. Hui, P. Dutta, and D. Culler, “Marionette: Using
RPC for Interactive Development and Debugging of Wireless
Embedded Networks,” in Proceedings of the 5th International
Conference on Information Processing in Sensor Networks
(IPSN), 2006.

[20] D. Pfisterer, M. Wegner, H. Hellbruück, C. Werner, and
S. Fischer, “Energy-optimized Data Serialization For Hetero-
geneous WSNs Using Middleware Synthesis,” in Proceedings
of the 6th Annual Mediterranean Ad Hoc Networking Work-
Shop (Med-Hoc-Net), 2007.

[21] G. Moritz, D. Timmermann, R. Stoll, and F. Golatowski,
“Encoding and Compression for the Devices Profile for Web
Services,” in Proceedings of the 5th IEEE International
Workshop on Service Oriented Architectures in Converging
Networked Environments (SOCNE), 2010.

121

