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Figure 1: Evaluation cycle used to quantify the impact of aggregate trace characteristics on the achievable NILM performance.

ABSTRACT

Electrical consumption data contain a wealth of information, and
their collection at scale is facilitated by the deployment of smart
meters. Data collected this way is an aggregation of the power de-
mands of all appliances within a building, hence inferences on the
operation of individual devices cannot be drawn directly. By using
methods to disaggregate data collected from a single measurement
location, however, appliance-level detail can often be reconstructed.
A major impediment to the improvement of such disaggregation
algorithms lies in the way they are evaluated so far: Their per-
formance is generally assessed using a small number of publicly
available electricity consumption data sets recorded from actual
buildings. As a result, algorithm parameters are often tuned to pro-
duce optimal results for the used data sets, but do not necessarily
generalize to different input data well. We propose to break this
tradition by presenting a toolchain to create synthetic benchmark-
ing data sets for the evaluation of disaggregation performance in
this work. Generated synthetic data with a configurable amount of
concurrent appliance activity is subsequently used to comparatively
evaluate eight existing disaggregation algorithms. This way, we
not only create a baseline for the comparison of newly developed
disaggregation methods, but also point out the data characteristics
that pose challenges for the state-of-the-art.
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1 INTRODUCTION

Non-Intrusive Load Monitoring (NILM), or “load disaggregation” for
short, is a technique to identify individual contributing appliances
from the total electrical power consumption of a building. Since
the initial presentation of this concept in [11], numerous authors
have made algorithmic contributions to disaggregate data from
private homes as well as commercial and industrial facilities (e.g.,
[15, 20, 28, 38]). An important aspect during the development of
disaggregation algorithms is to ensure their applicability in practical
settings. Algorithms are hence often trained and tested on data
collected in real-world campaigns because only such data inherently
feature the full spectrum of characteristics present in reality. This
step is facilitated by the availability of data sets that contain time
series data of a building’s total consumption, as well as data on
the electricity demand of the individual devices present within.
Thus, these data sets provide the possibility to verify the correct
attribution of disaggregated electrical power to each appliance.
Besides the fact that only a small number of such data sets have
been publicly released, the evaluations of most proposed NILM
algorithms are confined to the use of a single data set only. Thus,
it generally cannot be ascertained that the achieved disaggrega-
tion results can be generalized. In fact, as soon as an algorithm’s
parameter settings are optimized for one specific building, it is
not unlikely to observe degraded accuracy levels for other nearby
houses (cf. Sec. 2.1). This is particularly aggravated when the data
sets originate from different geographical areas or different levels of
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Table 1: Disaggregation performance results when running eight disaggregation methods (cf. Sec. 4.1 for details) on data from
five data sets for load disaggregation. Results for the best-performing disaggregation algorithms are highlighted in bold font.

MAE by disaggregation algorithm

F1 score by disaggregation algorithm

Data set (house) CO DSC Hart85 FHMM DAE RNN S25  S2P CO DSC Hart85 FHMM DAE RNN S2S5 S2P
DRED (1) 52.86 41.55 3436 44.44 32.65 33.12 42.05 33.35 0.50 0.49 0.40 049 048 0.47 0.51 0.47
ECO (5) 134.12 94.16 43.88 81.75 37.63 32.11 30.47 28.43 0.47 0.46 0.50 0.47 055 0.61 0.56 0.64
ECO (6) 86.67 40.28 30.20 42.86 17.26 6.09 17.33 17.30 0.32 0.36 0.21 0.32 032 0.74 031 0.32
REDD (1) 230.88 163.34 30.93 138.66 34.56 34.30 25.75 31.72 041 0.44 0.77 042 0.66 0.63 0.67 0.65
REDD (6) 248.70 257.67 32.54 70.72 22.11 45.83 46.11 45.53 0.71 0.71 0.80 0.71 0.71 0.72 0.71 0.71
REFIT (2) 72.25 104.04 31.55 72.25 36.08 31.50 52.80 51.28 0.52 0.51 0.53 0.52 059 0.61 0.52 0.52
REFIT (5) 311.48 13940 86.50 66.04 34.63 52.05 28.19 3544 0.67 0.66 0.50 0.67 075 0.68 0.73 0.76
UK-DALE (1) 140.78 4499 2198 51.96 16.10 16.52 15.67 13.80 0.65 0.55 0.91 0.65 0.89 0.90 0.87 0.90
UK-DALE (5) 321.08 68.80 33.53  64.61 25.08 29.67 24.16 24.21 0.59 0.52 0.70 0.59 0.80 0.77 0.80 0.81

building occupancy [6]. An intuitive way to overcome this obstacle,
and a method widely used in other disciplines, would be to release
a benchmarking data set that features sufficient training data from
diverse locations in a data format that can be easily interpreted.
The compilation of a representative data set, however, is compli-
cated by the licensing requirements of existing data sets and the
unavailability of data from many regions around the globe.

We thus follow an alternative approach in this work. Instead
of attempting to compile a benchmarking corpus from existing
data sets, we present a methodological way to synthetically create
data sets of definable disaggregation complexity. A high degree of
realism can be accomplished by using accurate models of existing
appliances and user activities. By forwarding synthetically gener-
ated data of gradually increasing levels of concurrent appliance
activity to state-of-the-art disaggregation algorithms, we determine
their sensitivity to specific data characteristics in a much more
fine-grained way. The key contributions of this work are:

(1) We present a toolchain, ANTgen, to synthetically generate
load signature data (both the household aggregate and in-
dividual data for all appliances) to synthesize data with a
highly realistic appearance while permitting fine-grained
control over the contained appliances and activities.

(2) We benchmark the performance of eight disaggregation al-
gorithms when applied to generated synthetic data. By iter-
atively increasing the complexity of the used input data, we
methodologically determine the characteristic features that
complicate the disaggregation step.

(3) We discuss and interpret the results and highlight the limita-
tions of current disaggregation algorithms that necessitate
more consideration in future work.

2 DATA SET DEPENDENCIES OF EXISTING
LOAD DISAGGREGATION ALGORITHMS

Recent surveys [35, 40, 41] indicate that close to one hundred ap-
proaches to tackle the load disaggregation challenge have been
proposed in literature to date. An objective way to evaluate their
accuracy is strongly needed to find the best-performing candidates
and identify promising avenues for future research. Many of the

publications rely on real-world data sets (e.g., REDD [21] or UK-
DALE [16]) for this purpose, as they inherently reflect the con-
sumption characteristics of actual users in real buildings. Only by
providing NILM mechanisms with the same input data set (or ex-
cerpts thereof), their disaggregation performance can be evaluated
in a comparative manner.

2.1 Disaggregating Existing Data Sets

We demonstrate the variations when running NILM algorithms
on existing data sets through a practical experiment. For this pur-
pose, we run eight disaggregation methods that are part of the
NILMTK [3] on data from five widely used data sets. Our choice of
data sets is governed by the requirement of them containing both
aggregate consumption data (i.e., the household total) as well as
values for the individual electrical appliances, in order to verify
the correct attribution of power usage. As a result, we use two
monitored houses each from ECO [4], REDD [21], REFIT [26], and
UK-DALE [16], as well as the DRED data set [37], which only covers
one house. Our choice of disaggregation algorithms is motivated
by their availability in NILMTK as well as the diversity in their
fundamental mode of operation; more detailed explanations of the
algorithms are given in Sec. 4.1. The default parameter settings were
used for all employed algorithms, and methods based on neural net-
works were trained with a batch size of 128 and a sampling interval
of 10's for a duration of 10 epochs. For data sets that contain more
than 150 days worth of data, 150 consecutive days were randomly
selected for analysis; smaller data sets were used completely. In
each case, 70 % of the input data were used for training, and the
disaggregation performance was evaluated on the remaining 30 %.

As our objective is not to determine the single best disaggrega-
tion scheme, but rather to highlight the variations in the results
they accomplish, we confine our evaluation results to two eval-
uation metrics, namely the MAE and the F1 score (cf. Sec. 4.1.2).
While an F1 score of 1.0 indicates a perfect disaggregation result,
lower values indicate that not all activities were detected correctly.
In contrast to this, a low MAE value indicates a small deviation
between the disaggregated data and is thus an indicator for a good
disaggregation accuracy. Results for the disaggregation of a refrig-
erator appliance are given in Table 1. The refrigerator has been
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specifically selected to allow for a comparability across the data sets
because it is present in all of the monitored houses. The tabulated
results clearly indicate that none of the compared NILM algorithms
universally achieves the best disaggregation result. Quite to the
contrary, algorithms that excel in one case (e.g., S2P applied to
house 1 of UK-DALE) exhibit poor results when used to disaggre-
gate data from another source (e.g., house 2 of REFIT). Furthermore,
even different houses within the same data set partially exhibit
significant differences with respect to the extent to which the re-
frigerator’s power demand can be correctly disaggregated. In some
cases, we even observe that the CO algorithm (which dates back
to 1985) shows comparable disaggregation performance to RNNs,
even though the latter approach has been published 30 years later.

2.2 Implications on Disaggregation Algorithm
Development

The insights gained in our brief preliminary study already show the
variations in disaggregation performance, even though an appliance
type was used that is often considered “easy to estimate” [10, 24].
Furthermore, the data sets we have used were collected in geo-
graphic areas with comparable climate conditions and economic sit-
uations (DRED: The Netherlands, ECO: Switzerland, REDD: United
States, REFIT: Scotland, UK-DALE: England). Consequently, even
more heterogeneous results can be anticipated when trying to dis-
aggregate data from different regions [2], e.g., Africa or Asia. The
unavailability of data from many geographic areas, however, repre-
sents a major obstacle to the comprehensive evaluation of newly
proposed disaggregation algorithms. In fact, using the current ap-
proach, i.e., confining performance evaluations to limited input
data sets, it is impossible to deduce that attained results will also
generalize to other buildings, cities, countries, or even continents.

For an objective evaluation of an algorithm’s disaggregation
performance, we thus argue that it is necessary to supply it with
input traces of variable disaggregation complexity, featuring the
specific features of the targeted geographic area. Moreover, in order
to allow the creators of novel disaggregation techniques to com-
pare the performance of their approaches to the state of the art, a
compilation of such input traces should be available, ideally in the
form of a benchmark data set. By applying different algorithms to
the same set of data, their performance differences (and possibly
even the underlying reasons) can be determined in much greater
detail, and the design of new solutions and/or the improvement of
existing algorithms be fostered.

3 TOWARDS COMPARABLE PERFORMANCE
EVALUATIONS OF NILM ALGORITHMS

To accomplish an automated and comparable evaluation of NILM
disaggregation performance, we propose to use the data processing
toolchain depicted in Fig. 1 in this paper. On its left-hand side, the
part to create synthetic load signatures at configurable disaggrega-
tion complexity is shown. More details about its design and selected
implementation details are provided in Sec. 3.1. The right-hand side
part of the figure shows our evaluation setup. To accommodate
the flexible extensibility of our toolchain, we rely on NILMTK [3].
This open-source framework combines implementations of several
NILM algorithms in conjunction with a range of evaluation metrics,
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and can be easily extended by new algorithms. More details on its
usage within the scope of our evaluation setup are given in Sec. 3.2.
The presented toolchain is used to synthetically generate data for
the benchmarking of NILM algorithms, which we describe in Sec. 4.

3.1 Synthetic Load Signature Generation

In order to assess the sensitivity of disaggregation algorithms to
the characteristics of load signatures, a way to provide them with
input data of varying complexity is required. Publicly available data
sets, collected by means of real-world sensor deployments, thus
take an important role in the evaluation of NILM algorithms and
to support their general operability (cf. Sec. 2.1). The limitations of
real-world data sets (i.e., their confinement to specific geographic
areas and particular demographics) [18], however, limit the extent
to which they can be used to draw generalizable conclusions. This
is a severe impediment, given that intentional variations of the
data to disaggregate are required in order to judge an algorithm’s
sensitivity to specific data characteristics.

To overcome this limitation of existing data sets, we have devel-
oped ANTgen (the “AMBAL-based NILMTK Trace generator”)!, a
tool to facilitate the generation of electrical consumption data at
definable levels of disaggregation complexity. The realistic appear-
ance of ANTgen’s output data is vital to allow for the generalization
of observations to data collected in real-world smart meter deploy-
ments, and specifically catered for by three mechanisms.

(1) ANTgen relies on appliance load signatures (i.e., time se-
ries of an appliance’s power intake over time) from existing
data sets. By transforming them into synthesizable models,
generated load data implicitly reflects the consumption char-
acteristics observed from the operation of actual appliances.

(2) ANTgen schedules the operation of appliances according
to models of daily activities, which define the operation of
a set of appliances in a given order. This way, the order of
appliance operation in synthetic data resembles reality (i.e.,
a meal is first cooked, then eaten).

(3) User models are employed that determine what activities
will be present in the data, during which times they can be
taking place, as well as the frequency of their occurrence.
Data complexity can thus be easily increased by adding more
(virtual) members to a synthetic household.

All of the aforementioned concepts are presented in more detail in
the following subsections.

3.1.1  Appliance models. In order to generate aggregated load signa-
tures with realistic appearances, the electrical power consumptions
of all contributing appliances must closely resemble reality. We
hence build on existing concepts for synthetic appliance model-
ing [5, 7] in order to extract of appliance models from appliance-
level load signature data. In preparation for their modeling, the
operational cycles of individual appliances are extracted, and all
periods of appliance inactivity removed. The operational cycles
identified in the previous step are then divided into segments, each
of which is approximated separately by one of four models: (1) A
constant value, (2) a linear change of the power from a given start
value to an end value, (3) a logarithmic growth or decay function,

! Available at https://github.com/areinhardt/antgen
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(a) Power consumption during one operation cycle extracted from input data
(top) vs. its modeled representation (bottom). The dashed vertical lines depict
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Figure 2: Example result of the model extraction step for a
dishwasher’s load signature.

or (4) an exponential growth or decay function. A graphical user
interface is provided for the model extraction step, in order to verify
and optionally amend the choice of the parameter settings. Given
that modeling only needs to be executed once, yet poorly fitting
models will render the synthetic data unusable, we believe that
it is meaningful to leverage expert knowledge at this stage. An
XML-based model representation is stored after completion of the
model extraction step for each modeled appliance load signature.
This approach allows us to combine the advantages of real-world
data (to ensure that synthetically generated traces have a realistic
appearance) with those of generative models (being able to schedule
them as often as needed).

The measured power consumption of a dishwasher appliance
(from Tracebase [32]) as well as its modeled approximation are
shown in Fig. 2a, and a tabular representation of the first segments
of the output model is given in Fig. 2b. Without loss of generality,
we source appliance-level input data from the ECO [4] and Trace-
base [32] data sets. The extraction of appliance models from other
data sets is easily possible, as long as appliance-level load signa-
tures are available. Our decision to rely on data sets collected in
the same region (ECO: Switzerland, Tracebase: Germany), however,
ensures a greater degree of realism in the synthetic data because
the contained electrical appliances are likely to originate from the
European Single Market. More specifically, the appliance models
listed in Table 2 are used throughout the tests we conduct in Sec. 4.
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Table 2: List of appliances for which ANTgen models have
been extracted from the Tracebase and ECO data sets.

Category  Appliances
kitchen refrigerator, dishwasher, toaster, microwave
oven, kettle, stove, coffee maker, bread cutter
housekeeping washing machine, vacuum cleaner
entertainment PC, TV, CD player, amplifier

3.1.2  Activity models. The second type of model required to gener-
ate load signatures with a realistic appearance is the consideration
of user behavior. In this work, we assume that users have specific
routines for certain actions; a widely used assumption in research
on Activities of Daily Living (ADL), such as [8, 25]. For example,
the preparation of a breakfast meal might include the operation of
a stove, water kettle, and toaster in a given order and for a given
duration. For the sake of simplicity, we model user activities in the
form of state machines. By annotating the state transitions with
probabilities, our system accommodates variations in the order (e.g.,
first operate the toaster, then the kettle, or vice versa) as well as to
make certain steps optional (e.g., skipping the use of the stove for
breakfast altogether). Activities thus govern the use of appliance
models over time, as well as the (temporal and logical) dependencies
between them. A sample application state machine for the “break-
fast” activity is given in Fig. 3, whilst the state machine modeling
the cyclic operation of a refrigerator is given in Fig. 4.

Besides the definition of their logical sequence of steps (and
the appliances required to execute them), activities also feature
annotations whether the user’s presence is required during the
entire activity (e.g., having breakfast), only during its initial phase
(e.g., to start the washing machine), or if appliances run fully unat-
tended (e.g., a refrigerator). Our definition language facilitates the
provision of such annotations in order to cater for the correct syn-
thesis of load profiles. Like for the extraction of appliance models
in Sec. 3.1.1, the definition of activity models is a manual step and
requires expert knowledge to ensure their realistic appearance.

3.1.3  User models. As a third and final component of our synthetic
load signature generation tool, we model the behavior of users by
creating a mapping between their physical presence in the build-
ing, the activities they can perform during this time, as well as the
number of times a certain activity is performed per day on average.
The independent modeling of users allows for the synthesis of data
with a low degree of concurrency (such as exhibited by rental apart-
ments inhabited by single persons) up to multiple parallel appliance
operations, like in multigenerational homes. User-independent base
loads, such as exhibited by refrigeration equipment and the standby
power consumption of appliances, are modeled in the same fashion,
yet simply not attributed to a particular user identity.

3.1.4 Trace synthesis. The logical connections between users, ac-
tivities, and corresponding appliance operations are established by
ANTgen. Scheduling user-driven activities in a certain time frame
requires three conditions to be met: (1) The user’s presence at home,
(2) the user’s ability to execute a certain activity during that time,
and (3) the availability of the appliances required to this end (i.e.,



How does Load Disaggregation Performance Depend on Data Characteristics? Insights from a Benchmarking Study

Coffee or tea?

Prepare coffee maker Prepare tea kettle
(delay 20 seconds) (delay 10 seconds)

| !

Synthesize coffee maker Synthesize kettle
load signature load signature

l |

70% Toast or eggs? 30%

(delay 5 seconds)

run unattended
to completion
run unattended
to completion

Synthesize toaster

load signature 20%

Synthesize stove
load signature

o =

E‘% Another slice? %
5% (delay 5 seconds) —é*
g 8

o

=]

¢ Eat breakfast =

end (delay 1,200 seconds)

Figure 3: Sample activity model for the “preparing break-
fast” activity. Curly lines indicate the synthesis of appliance
load signatures into the output data. This activity requires
the user to be present in the building during its execution.

they must not occupied by any inhabitant of the building simultane-
ously). ANTgen stores all of these conditions in the form of bitmaps,
and applies a logical conjunction of these bitmaps to determine
time frames during which activities can place. Activities (and the
ensuing appliance operations) are then scheduled at random within
these time frames, permitted that the duration of the activity fits
into the available time. For activities that rely on the unattended
operation of appliances, the user presence is disregarded when
finding suitable operational times.

A simple case reflecting the following story is visualized in Fig. 5,
where the highlighted fields indicate that a given condition is true.
User Alice wants to have a cup of tea, for which she needs to operate
the water kettle (the appliance). Given that she shares an apartment
with Bob, the kettle is not available for a part of the day during
which Bob does his cooking. Alice only takes tea during certain
hours (the late morning and early afternoon), which limits the times
during which the activity can take place. Lastly, she (the user) leaves
the apartment for a while, and naturally cannot prepare tea during
her absence. Through the logical conjunction of these conditions,
only a small number of possible time frames remain during which
she can perform this activity. Whether or not ANTgen schedules
the activity in one of them finally depends on the probability of
having tea on a given day. In the example case, we assume that
Alice has tea once every day, thus ANTgen randomly schedules the
activity in one of the possible time slots (highlighted in the figure),
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Figure 4: Sample activity model for a refrigerator’s opera-
tion. This appliance runs unattended and uninfluenced of
the user, and does not necessitate the user’s presence in the
building during its operation.

during which it subsequently marks the user and the appliance
busy in the corresponding bitmaps.

In ANTgen, the temporal resolution at which data are being
generated is 1s, and thus each bit in the bitmaps corresponds to
one second of synthetic data. The repeatability of experiments is
supported in ANTgen through the possibility to seed its random
number generator by a known value. Being able to completely repli-
cate experimental runs is a crucial prerequisite for the generation of
benchmarking data sets. Alternatively, a pseudo-random seed value
can be used to generate synthetic data with the same users, activi-
ties, and appliances, yet different schedules, in order to augment
the amount of training data available to a disaggregation algorithm.

3.2 Trace Disaggregation using NILMTK

The key contribution of this paper is a comprehensive evaluation
and sensitivity analysis of existing NILM algorithms. Two comple-
mentary contributions are required in order to this end:

(1) Input data that features both the building aggregate trace as
well as the load signatures of all appliances (the ground truth).
As ANTgen computes the aggregate data by summing up the
load signatures of individual appliances, this prerequisite is
easily met when using ANTgen.

(2) A disaggregation tool that reconstructs individual load sig-
natures from an aggregate input signal it is provided with.
Through the comparison of the disaggregated appliance-
level data with the ground truth, the disaggregation accuracy
can be evaluated.

We rely on the set on disaggregation algorithm implementa-
tions in NILMTK [3], which we discuss in more detail in Sec. 4.1.
NILMTK expects input data to be stored in the HDF5 file format,
with annotations compliant to the NILM Metadata scheme?. We
thus convert ANTgen’s output to the HDF5 format used in NILMTK,
and auto-generate the required metadata annotations to facilitate
their import, based on the used appliance models. As ANTgen
outputs both individual power consumption traces for each appli-
ance under consideration and an aggregate value that simulates
the power demand recorded at the smart meter, all essential data
required to run and evaluate NILM algorithms are provided. The
entire data generation and processing chain (cf. Fig. 1) allows us to
run evaluations in an automated fashion. At the same time, changes
to ANTgen’s configuration (e.g., adding the model of another user
to the simulated building) allow for the deliberate variation of its
output data.

2 Available at https://github.com/nilmtk/nilm_metadata



e-Energy’20, June 22-26, 2020, Virtual Event, Australia

LIIIIE@ - v v ceermesraraetentantaitiataataataatiataataataataasaiananes

Andreas Reinhardt and Christoph Klemenjak

user at home | I I I I I I I I [

user can have tea [ I I I I I I I I [

kettle available | I I I I I I [ [ [

possibleschedule [T T T T T T oo

Figure 5: ANTgen internally relies on bitmaps to indicate user presence, activity times, and appliance usage. The logical con-
junction of each bit is used to determine possible time slots at which an activity can take place.

4 METHODOLOGICAL NILM EVALUATION

An intuitive expectation to the disaggregation performance is its
dependency on the extent of concurrent appliance activity in the
underlying data set. While the sole presence of a single appliance is
expected to be easily detectable at high accuracy, more variations in
the load signatures as well as more simultaneous appliance activities
are expected to complicate the disaggregation process significantly.
A methodological evaluation of the sensitivity of a set of NILM
algorithms to such occurrences is thus needed, in order to get
a better understanding of which features have an impact on the
disaggregation performance. We conduct an extensive study in this
section, and discuss the gained insights in Sec. 4.3.

4.1 NILM Algorithms and Evaluation Metrics

4.1.1 Disaggregation algorithms. Within the scope of our evalua-
tions, we rely on the following eight disaggregation algorithms that
are implemented as part of NILMTK. Relying on this many algo-
rithms is essential to meet our objective of providing a comparative
performance study.

(1) Combinatorial Optimization (CO), introduced in [11] first
tries to determine the power demand of each appliance for
each of its modes of operation. Then, the goal of CO is to
identify the subset of concurrently active appliances such
that the difference between the measured aggregate and the
sum of individual appliances’ power intakes is minimal.

(2) Discriminative Sparse Coding (DSC) [19] first trains models
that reflect each considered appliance’s hourly energy de-
mand. Subsequently, an “activation schedule” for each of
the appliances is determined, which minimizes the error be-
tween the modeled consumption and the observed energy
demand. This optimization step is accelerated by applying
sparsity constraints on the model activations.
Edge Detection (Hart85) [11] divides an input time series data
into periods of steady and transient power demand. After
each transient period, the magnitude differences between its
surrounding steady states are correlated with appliance state
changes, and each appliance’s operating state is updated
correspondingly.

An Exact Factorial Hidden Markov Model (FHMM) represents

each appliance by a hidden Markov model, composed of

states (with steady power demand) and the transitions be-
tween them. Through extracting the mean power demand
for each state as well as the probabilities for state transitions,

FHMMs attribute observed power data to the appliances

whose models allow to fit the shape of the load signature.

—
S
=

—~
N
=

(5) Autoencoders are symmetrically designed neural networks
trained to closely reproduce their input at their output, while
using a sparse internal representation [13]. The Denoising
Autoencoder (DAE) considers the aggregate power signal as
a noisy representation of an appliance’s power signal, and
uses the autoencoder to eliminate the contributions of other
appliances from the signal [15, 22].

(6) The use of Recurrent Neural Networks (RNNs) for load dis-
aggregation was proposed in [15]. A neural network with
memory cells is trained to recognize the load signatures of
individual appliances within aggregate data. After its train-
ing, the network outputs an updated estimate of the set of
operating appliances for each newly received input sample.

(7) Sequence-to-Sequence Optimization (52S) also uses neural
networks, yet without memory elements [39]. Instead, slid-
ing windows across the aggregate input data are mapped to
power consumption segments of appliance loads. This way,
previously observed patterns in aggregate load data can be
matched to the trained characteristics of individual devices.

(8) The Sequence-to-Point Optimization (S2P) technique is a vari-
ation of S2S and also relies on neural networks, yet instead
of outputting a sequence of power consumption values for
an appliance’s disaggregated power demand, it is specifically
trained to only output the value at the midpoint of a time
window [39].

Three more algorithms are available in NILMTK, but have been
disregarded from our analysis because they either reported con-
sistently poor results (which was the case for the simple mapping
of the mean power consumption to the set of contributing appli-
ances) or were too slow to complete our experiments in reasonable
time (WindowGRU [22] and AFHMM [20]). Even though they have
not been considered in this work, a comparative evaluation can be
conducted at a later stage using the same synthetic data.

4.1.2  Evaluation metrics. To measure the classification performance
of the considered algorithms, we compute two metrics that describe
how well the disaggregated data for given appliances line up with
the ground truth. Our first metric, the Mean Average Error (MAE),
is computed according to Eq. (1).

~

. 1 — . .
MAED = —. 37 () _ (D 1)
t:

~|
I
=]

In the equation, x; and X; are the actual and disaggregated power
demands of appliance i, respectively, and T represents the number
of samples in the data. The MAE is an absolute measure of the
error between actual and disaggregated appliance power demand.
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Figure 6: Excerpt of the input data set TC4-N2 (1 simulated user, 80 W additional constant background load) during the course
of two days. The top graph shows the total aggregate consumption, the middle one is disaggregated by the nature of power
consumption, whereas the bottom diagram provides a separation by each user-driven action.

Thus, it implicitly penalizes the mis-detection of appliances with
a greater energy demand. The second metric considered is the F1
score (F-measure), computed as per Eq. (2).

R TP2+ ;113) +FN @
TP represents the number of true positive disaggregation results,
FP the false positive detections, and FN the false negatives. In order
to compute this metric, appliance operations are discretized to a
binary form (active/inactive) for each time interval. The sums of
all occurrences are then computed as follows:

F1

xfi) = active, fct(i) = active — true positive (TP)
xt(l) = inactive, fct(l) = active — false positive (FP)
xt(l) = active, fct(l) = inactive = — false negative (FN)

The F1 score has been specifically selected because it excludes
true negative results (i.e., the correct detection of an inoperative
appliance), given the large number of such occurrences in load
signature data. The chosen set of metrics is also well aligned with
the proposals presented in other studies on NILM, such as [23, 30],
which recommend the use of metrics from at least two categories
when evaluating disaggregation performance.

4.1.3  NILMTK settings. We rely on the latest version of NILMTK at
the time of writing (v@.4.@dev1). Implementations of all disaggre-
gation algorithms were taken the NILMTK-contrib repository> and
used with their default set of options (cf. [3]). Besides resampling
ANTgen’s output data to a uniform sampling interval of 10s to
cater for a fair evaluation, no further data preprocssing has been
applied. All neural networks are trained for 10 epochs to prevent
overfitting; for DSC, 100 iterations are executed per training step.
These training specifications are motivated by our objective to ex-
plore characteristics of existing NILM algorithms in a broad range
of cases, rather than optimizing them for their best performance.

3 Available at https://github.com/nilmtk/nilmtk- contrib

4.2 Input Data

In order to comprehensively evaluate NILM performance, input
data of variable complexity are required. For a fair comparison,
we consistently created 180 days of synthetic input data, out of
which 126 days (70 %) are provided to the algorithms as training
data; the remaining 54 days (30 %) are consequently used to test
the algorithms. An overview of the generated data sets and their
characteristics is given in Table 3, which lists the number of (virtual)
users and appliances present in a building, as well as the maximum
number of concurrently active appliances. The modeled activities
include the different ways to prepare food (for breakfast, lunch, and
dinner), entertainment activities (using a PC, watching TV, listening
to music) and household chores (running the dishwasher, laundry
washing, and vacuuming). We have plotted the first two days of
the TC4 data set in Fig. 6 for visual reference. The total aggregate
(shown in the top figure) is composed of traces that result from
user activities (bottom) figure.

Orthogonal to the addition of appliances and their concurrent
operations, we also run five variants of each data set through the
disaggregation algorithms:

NO The synthetic data that are simply an addition of all individ-
ual appliance load signatures.

N1 A constant load of 20 W is added to the aggregate trace, in
order to simulate a small invariable amount of standby loads.

N2 A constant load of 80 W is added to the aggregate trace, in
order to simulate a greater contribution of standby loads.

N3 Gaussian noise with a mean of 20 W and a standard deviation
of 10 W is added to the aggregate trace, in order to simulate
a small amount of distortion.

N4 Gaussian noise with a mean of 80 W and a standard deviation
of 20 W is added to the aggregate trace, in order to simulate
a greater amount of distortion.
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Table 3: Synthetic data sets created in this paper to evaluate
the performance of NILM algorithms.

Test case # users # appliances Max. concurrently active
TC1 0 1
TC2 1 3
TC3 1 8 5
TC4 1 14 5
TC5 2 8 8
TC6 2 14 9

4.3 Insights from our Comparative Study

We have run all variants of the synthetically generated data sets
through NILMTK, using 8,400 evaluation runs (6 test cases X 5
noise levels X 8 disaggregation algorithms X 1-7 appliances under
consideration). We summarize the key insights as follows:

4.3.1 The refrigerator is (indeed) an easy-to-disaggregate appliance.
Aligned with the observations in [10, 24], the refrigerator appliance
consistently represents the appliance that can be disaggregated at
greatest accuracy. F1 scores above 0.85 can be consistently achieved
with many algorithms, as shown in Fig. 7. The best overall results
are unsurprisingly accomplished for test case 1 (TC1) with no added
noise (NO), in which the refrigerator is the only appliance in the
building. Even the presence of added noise (N1-N4) does not lead
to drastically degraded disaggregation scores for the refrigerator.
A slight tendency to degraded disaggregation F1 scores can be ob-
served for test cases with more concurrent appliance activity (TC2-
TC6), yet overall the accuracy is are still remarkably high. The only
exception to this general trend is visible for Hart85, which yields
a poor F1 score for test case 1 (N0O-N2), but reaches much higher
values for the rest of the cases. Given that virtually all algorithms
fare with the refrigerator well, it should be re-considered whether
this appliance is a good measure for disaggregation performance.

4.3.2  Concurrent appliance activity does not influence all algorithms
the same way. Let us compare the MAE diagrams of the refrigerator
in Fig. 7b with an excerpt of the scores of the coffee maker in Fig. 8.
In general, a positive correlation between the extent of noise and
appliance concurrency and the resulting MAE can be observed,
with occasional outliers for some configurations (most often for
the CO, DSC, and FHMM algorithms). A more coherent trend is
observed for the coffee maker, but instead the increment in MAE
is much more pronounced for these algorithms. This can likely be
attributed to the coffeemaker’s load signature (which is internally
cycling between heating and idle states, with no power drawn
during the latter phases), whereas the refrigerator’s power demand
follows an exponential decay model during its cooling cycle. MAE
values of DAE, RNN, S2S, and S2P are largely unchanging or even
shrinking with more complex disaggregation scenarios. This hints
at the fact that these algorithms have a greater resilience to noise
and concurrent appliance operations.

Investigating deeper into this issue, let us look at the F1 score
of FHMM when disaggregating difference appliances, as shown in
Fig. 9. The values marked “ref” in the figure represent results of a
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data set in which only the given appliance was present and config-
ured to operate five times per day. Given the strong degradation
FHMM experiences beyond the reference case, the figure reveals the
algorithm’s sensitivity to noise and concurrent activities. However,
this limits its usability in practical NILM settings where isolated
appliance operation is the exception rather than the norm. Using
test data with realistic features (i.e., concurrently operative devices)
is thus vital for the comprehensive evaluation of NILM algorithms.

4.3.3 Not all algorithms can disaggregate multi-state appliances.
The dishwasher appliance is an exemplary case of a multi-state ap-
pliances, i.e., a device that follows a sequence of states (e.g., rinsing,
soaking, drying) in a pre-defined order. Disaggregating its power
consumption (see Fig. 10), however, shows a rather discernible per-
formance gap between the first four considered algorithms (CO,
DSC, Hart85, and FHMM) which exhibit low F1 scores and high
MAE values, and the remaining four algorithms under consider-
ation (DAE, RNN, S2S, and S2P). A similar, yet less pronounced,
observation can be made for the coffee maker (Fig. 8). Given the
prevalence of multi-state appliances (particularly in white goods),
we suggest that such devices should be part of all evaluation setups
for newly proposed NILM methods.

4.3.4  Current evaluation metrics are not expressive enough. In our
evaluations, we have used the correctly attributed power (MAE)
and the correct decision if an appliance was operative (F1 score) in
conjunction. The underlying reason is that these metric quantify
different aspects of disaggregation performance. Other authors
(e.g., [30]) have already determined the need for more expressive
metrics that combine whether and how accurate appliances could
be disaggregated. Rather than using a single metric only, we thus
suggest a set of complementary metrics to be computed when
comparatively evaluating disaggregation algorithms in order to
better highlight the strengths and weaknesses of an algorithm.

4.3.5 Out of the considered algorithms, S2P is the top-scoring choice.
Having observed generally high F1 scores for RNN, S2S, and S2P,
and low corresponding disaggregation MAE values, these methods
appear as promising avenues for future research. We hence present
a more detailed comparison of these three top-scoring algorithms
in Fig. 11 when applied to five appliances in the TC6 test case. In
general, the F1 score of S2P is almost always superior to the other
two mechanisms, and only slightly outperformed by S2S for the
case of the refrigerator when no added noise is present. Thus, the
approach of using a window of input data to disaggregate just a
single value appears as a promising candidate to build upon in new
algorithm designs.

5 RELATED WORK

Over the years, an enormous amount of research has been de-
voted to load disaggregation algorithms. Even though some of their
names indicate a generic applicability, e.g., Universal NILM [33],
their evaluations are mostly confined to a single data set, such
as UK-DALE [16] in [22, 34, 36], REDD [21] in [9], or BLUED [1]
in [14]. Confining performance evaluation of NILM algorithms to
just one single data set makes it impossible to draw any meaningful
conclusions about the performance when applied to data collected
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Figure 7: Results for the disaggregation of the refrigerator, for each of the metrics defined in Sec. 4.1.2.
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Figure 8: MAE scores for the disaggregation of the coffee
maker, on which the extent of concurrent appliance activ-
ity has the greatest impact.

in different settings. Thus, virtually all of the currently available dis-
aggregation algorithms must be considered to be strongly limited
with regard to the possibility to generalize their results.

Only a few studies have considered the comparative assessment
of NILM algorithms so far. In [4], five NILM algorithms were com-
paratively evaluated using the ECO data set, which had been col-
lected specifically for this purpose. Besides the results from the
comparison of disaggregation performance, a key insight was the
strong heterogeneity of current algorithm implementations with
regard to the expected input data format and data granularity, the
used programming language, and/or the metrics that have been

Figure 9: F1 score for the FHMM disaggregation algorithm
when disaggregating appliances in a reference case (no other
appliance activity) as well as test cases TC4/N1 and TC6/N4.

computed as part of their original evaluations. Consequently, a
framework called NILM-EVAL was developed to easily benchmark
disaggregation methods using the same input data and the same
performance metrics, and even tune their parameter settings. The
proposed framework was not widely adopted by developers of NILM
algorithms, however, and has not been extended by new methods
since its publication. In contrast to this, the Non-Intrusive Load
Monitoring Toolkit (NILMTK) [3] is experiencing a greater adoption
and greatly contributes to the repeatability of load disaggreagtion
research. NILMTK already ships with a set of disaggregation mech-
anisms (cf. Sec. 4.1) and can be easily extended by new methods.
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Figure 10: Results for the disaggregation of the dishwasher appliance (which is only part of test cases 4 and 6).
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Figure 11: F1 scores of the top-3 disaggregation algorithms
across five appliances from test case 6.

Thus, it allows for the same evaluation methodology to be applied
through all experiments and algorithms, which effectively results
in comparable and reproducible algorithm testing.

An analytical comparison of NILM approaches was presented
more recently in [27], in which the authors have compiled the
performance evaluation results of ten NILM algorithms, as reported
by their original authors. Similar to [4], the plethora of evaluation
metrics, the variety and heterogeneity of real-world data sets, as
well as the differences in the applied evaluation methodologies were
remarked as obstacles to a fair comparative evaluation study. The
concern regarding suitable metrics for an objective comparison was
furthermore raised in [23], which promotes the choice of metrics
to assess both classification and energy estimation accuracy.

The synthetic generation of data represents a viable means to
overcome data set limitations by allowing for the generation of
a virtually infinite amount of aggregate load signature data with
a configurable randomness, noise, and complexity. Correspond-
ingly, tools like AMBAL [5], SmartSIM [7], or the Load Profile
Generator [31] have been published. They allow for the genera-
tion of appliance-level and building-level load signatures, which
can subsequently be exported into file formats ready to be used
in disaggregation research. Their adoption in practice is, however,
extremely limited; to the best of our knowledge, not a single publi-
cation on NILM uses synthetic data for a performance evaluation.
Likewise, NILMPEds [29], SHED [12], and SynD [17] are attempts

to release a synthetic data set for NILM performance evaluations,
yet with neither any means to vary their complexity easily nor
access to the tool’s source code to create additional data.

Our contribution hence significantly advances the state of the
art, in that we not only provide a tool to generate synthetic data,
but also to use it as the input for NILMTK as well as evaluating
the disaggregation performance of all its included algorithms. By
combining our data set generator tool with NILMTK, we construct
a toolchain that enables reproducible on-demand performance eval-
uation of load disaggregation algorithms.

6 CONCLUSION

The development of NILM algorithms is currently seeing a great re-
search interest. Evaluations of such algorithms with regard to their
practical usability are, however, often limited to their operation
on a small number of available data sets. This represents a strong
limitation, as it is not possible to generalize the attained results.
In this work, we have made three major contributions to pave the
way towards a comparable evaluation of NILM algorithms. First, we
have introduced ANTgen, a tool to synthetically generate aggregate
load signature data with definable degrees of concurrent appliance
activity that can be fine-tuned to resemble regular user activities
close to reality. Second, we have defined six test cases, composed
of up to 9 user activities using 14 devices, and used ANTgen to
generate 180 days worth of synthetic data for each of them. These
data were then used to comparatively evaluate the disaggregation
performance of 8 existing algorithms in more than 8,000 runs of the
NILM toolkit. Third and lastly, we have discussed the insights we
have gained—some of them counterintuitive—and derived pointers
how to steer the future development of NILM algorithms into the
right direction.

Benchmarking is a technique widely used in other domains of
computer science and engineering, and we have translated this
concept to the NILM domain. By making ANTgen publicly available,
anyone can contribute activity and appliance models in order to
increase the realism of synthetic data even further. Still, NILM
algorithms will ultimately be faced with real-world data. We thus
primarily see the use of synthetic data as a vehicle to accelerate the
development of novel NILM methods rather than to declare data
sets collected in real-world scenarios obsolete.
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